Gauge invariant quantum circuits for $U(1)$ and Yang-Mills lattice gauge theories.

2021 
Quantum computation represents an emerging framework to solve lattice gauge theories (LGT) with arbitrary gauge groups, a general and long-standing problem in computational physics. While quantum computers may encode LGT using only polynomially increasing resources, a major openissue concerns the violation of gauge-invariance during the dynamics and the search for groundstates. Here, we propose a new class of parametrized quantum circuits that can represent states belonging only to the physical sector of the total Hilbert space. This class of circuits is compact yet flexible enough to be used as a variational ansatz to study ground state properties, as well as representing states originating from a real-time dynamics. Concerning the first application, the structure of the wavefunction ansatz guarantees the preservation of physical constraints such as the Gauss law along the entire optimization process, enabling reliable variational calculations. As for the second application, this class of quantum circuits can be used in combination with timedependent variational quantum algorithms, thus drastically reducing the resource requirements to access dynamical properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []