Enhancement of the synthesis of n-3 PUFAs in fat-1 transgenic mice inhibits mTORC1 signalling and delays surgically induced osteoarthritis in comparison with wild-type mice

2014 
Background An exogenous supplement of n-3 polyunsaturated fatty acids (PUFAs) has been reported to prevent osteoarthritis (OA) through undefined mechanisms. Objective This study investigated the effect of alterations in the composition of endogenous PUFAs on OA, and associations of PUFAs with mammalian target of rapamycin complex 1 (mTORC1) signalling, a critical autophagy pathway in fat-1 transgenic (TG) mice. Methods fat-1 TG and wild-type mice were used to create an OA model by resecting the medial meniscus. The composition of the endogenous PUFAs in mouse tissues was analysed by gas chromatography, and the incidence of OA was evaluated by micro-computed tomography (micro-CT), scanning electron microscopy and histological methods. Additionally, primary chondrocytes were isolated and cultured. The effect of exogenous and endogenous PUFAs on mTORC1 activity and autophagy in chondrocytes was assessed. Results The composition of endogenous PUFAs of TG mice was optimised both by increased n-3 PUFAs and decreased n-6 PUFAs, which significantly alleviated the articular cartilage destruction and osteophytosis in the OA model (p Conclusions Enhancement of the synthesis of endogenous n-3 PUFAs from n-6 PUFAs can delay the incidence of OA, probably through inhibition of mTORC1, promotion of autophagy and cell survival in cartilage chondrocytes. Future investigation into the role of the endogenous n-6/n-3 PUFAs composition in OA prevention and treatment is warranted.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    49
    Citations
    NaN
    KQI
    []