Graphene Oxide (GO)-based Nanosheets With Combined Chemo/photothermal/Photodynamic Therapy to Overcome Gastric Cancer (GC) Paclitaxel Resistance by Reducing Mitochondria-Derived Adenosine-Triphosphate (ATP)

2021 
Background Paclitaxel (PTX) has been suggested to be a promising front-line drug for gastric cancer (GC), while P-glycoprotein (P-gp) could lead to drug resistance by pumping PTX out of GC cells. Consequently, it might be a hopeful way to combat drug resistance by inhibiting the out-pumping function of P-gp. Results In this study, we developed a drug delivery system incorporating PTX onto polyethylene glycol (PEG)-modified and oxidized sodium alginate (OSA)-functionalized graphene oxide (GO) nanosheets (NSs), called PTX@GO-PEG-OSA. Owing to pH/thermal-sensitive drug release properties, PTX@GO-PEG-OSA could induced more obvious antitumor effects on GC, compared to free PTX. With near infrared (NIR)-irradiation, PTX@GO-PEG-OSA could generate excessive reactive oxygen species (ROS), attack mitochondrial respiratory chain complex enzyme, reduce adenosine-triphosphate (ATP) supplement for P-gp, and effectively inhibit P-gp's efflux pump function. Since that, PTX@GO-PEG-OSA achieved better therapeutic effect on PTX-resistant GC without evident toxicity. Conclusions In conclusion, PTX@GO-PEG-OSA could serve as a desirable strategy to reverse PTX's resistance, combined with chemo/photothermal/photodynamic therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    2
    Citations
    NaN
    KQI
    []