Influence of Thermomechanically Controlled Processing on Microstructure and Hydrogen Induced Cracking Susceptibility of API 5L X70 Pipeline Steel

2018 
The effect of different thermomechanical controlled processing routes on susceptibility of X70 pipeline steel to hydrogen induced cracking (HIC) have been studied. Two X70 pipeline steel specimens labelled WE and WD were investigated. These specimens have the same chemical composition, but they were processed with seperate thermomechanical treatments parameters. Microstructural examinations showed that WE consists of mainly acicular ferrite and polygonal ferrite, while WD consists of acicular ferrite and bainitic ferrite. After subjecting both specimens to hydrogen charging for 12 and 16 h in 0.2 M sulfuric acid and 3 g/L ammonium thiocyanate, early onset of HIC was observed in specimen WD. Post-hydrogen charging microstructural evaluation showed the nucleation of discontinuous cracks in WD after 12 h of charging. However, extended charging for up to 16 h resulted in HIC along the mid-thickness region of both specimens. Hydrogen diffusion across specimen WE was better than that of specimen WD. Therefore, hydrogen trapping at grain boundaries, banded deformed grains, inclusions and secondary phases such as martensite and cementite aided initiation and propagation of HIC in specimens. Nevertheless, the adverse effect of these features on HIC risks was more prominent in specimen WD compared to specimen WE. The Vickers microhardness values measured in WD (349.6 HV) and WE (307.4 HV) suggest that WD is harder than WE; and higher kernel average misorientation of 0.66° in WD than in WE (0.58°) shows higher dislocation density in WD. The results from slow strain rate tensile test confirmed that specimen WD was stronger and more susceptible to HIC than specimen WE. It was concluded that microstructural phases developed during thermomechanical processing improved strength in WD at the expense of its crack resistance, while WE with lower strength showed more ductility and higher resistance to HIC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    7
    Citations
    NaN
    KQI
    []