Biologically inspired computing framework for solving two-point boundary value problems using differential evolution

2017 
In the present study, a design of biologically inspired computing framework is presented for solving second-order two-point boundary value problems (BVPs) by differential evolution (DE) algorithm employing finite difference-based cost function. The DE has been implemented to minimize the combined residue from all nodes in a least square sense. The proposed methodology has been evaluated using five numerical examples in linear and nonlinear regime of BVPs in order to demonstrate the process and check the efficacy of the implementation. The assessment and validation of the DE algorithm have been carried out by comparing the DE-computed results with exact solution as well as with the corresponding data obtained using continuous genetic algorithms. These benchmark comparisons clearly establish DE as a competitive solver in this domain in terms of computational competence and precision.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    17
    Citations
    NaN
    KQI
    []