Investigation of maternal blood enriched for fetal cells : Role in screening and diagnosis of fetal trisomies

1999 
Prenatal diagnosis of chromosomal abnormalities relies on assessment of risk followed by invasive testing in the group with highest risk. Assessment of risk by a combination of maternal age and fetal nuchal translucency and invasive testing in the 5% of the population with the highest risk would identify about 80% of trisomy 21 pregnancies. Preliminary reports suggest that chromosomal abnormalities can also be diagnosed by fluorescent in situ hybridization (FISH) in maternal blood enriched for fetal cells. This study examines the potential role of this method on the prenatal diagnosis of fetal trisomies. Maternal blood was obtained before invasive testing in 230 pregnancies at 10–14 weeks of gestation. After enrichment for fetal cells, by triple density centrifugation and anti-CD71 magnetic cell sorting, FISH was performed and the proportion of cells with positive signals in the chromosomally normal and abnormal groups was determined. Fetal karyotype was normal in 150 cases and abnormal in 80 cases, including 36 with trisomy 21. Using a 21 chromosome-specific probe, three-signal nuclei were present in at least 5% of the enriched cells from 61% of the trisomy 21 pregnancies and in none of the normal pregnancies. For a cut-off of 3% of three-signal nuclei the sensitivity for trisomy 21 was 97% for a false positive rate of 13%. Similar values were obtained in trisomies 18 and 13 using the appropriate chromosome-specific probe. Examination of fetal cells from maternal blood may provide a noninvasive prenatal diagnostic test for trisomy 21 with the potential of identifying about 60% of affected pregnancies. Alternatively, this technique can be combined with maternal age and fetal nuchal translucency as a method of selecting the high-risk group for invasive testing. Potentially, 80% of trisomy 21 pregnancies could be identified after invasive testing in less than 1% of the pregnant population. Am. J. Med. Genet. 85:66–75, 1999. © 1999 Wiley-Liss, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    60
    Citations
    NaN
    KQI
    []