Numerical study of flow through and around a circular array of cylinders

2011 
This paper describes a study of the local and global effect of an isolated group of cylinders on an incident uniform flow. Using high resolution two-dimensional computations, we analysed the flow through and around a localised circular array of cylinders, where the ratio of array diameter (D-G) to cylinder diameter (D) is 21. The number of cylinders varied from N-C = 7 to 133, and they were arranged in a series of concentric rings to allow even distribution within the array with an average void fraction phi = N-C(D/DG)(2), which varied from 0.016 to 0.30. The characteristic Reynolds number of the array was Re-G = 2100. A range of diagnostic tools were applied, including the lift/drag forces on each cylinder (and the whole array), Eulerian and Lagrangian average velocity within the array, and the decay of maximum vorticity with distance downstream. To interpret the flow field, we used vorticity and the dimensionless form of the second invariant of the velocity gradient tensor. A mathematical model, based on representing the bodies as point forces, sources and dipoles, was applied to interpret the results. Three distinct flow regimes were identified. For low void fractions (phi 0.15), the array generates a wake in a similar way to a solid body of the same scale. For low void fraction arrays, the mathematical model provides a reasonable assessment of the forces on individual bodies within the array, the Eulerian mean velocity and the upstream velocity field. While it broadly captures the change in the rate of decay of the maximum vorticity magnitude Omega(max) downstream, the magnitude is underpredicted.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    113
    Citations
    NaN
    KQI
    []