AMPLE: An Adaptive Multi-Performance Processor for Low-Energy Embedded Applications

2008 
This paper proposes an energy efficient processor which can be used as a design alternative for the dynamic voltage scaling (DVS) processors in embedded system design. The processor consists of multiple PE (processing element) cores and a selective set-associative cache memory. The PE-cores have the same instruction set architecture but differ in their clock speeds and energy consumptions. Only a single PE-core is activated at a time and the other PE-cores are deactivated using clock gating and signal gating techniques. The major advantage over the DVS processors is a small overhead for changing its performance. The gate-level simulation demonstrates that our processor can change its performance within 1.5 microsecond and dissipates about 10 nanojoule while conventional DVS processors need hundreds of microseconds and dissipate a few microjoule for the performance transition (Shin et al., Oct. 2005) (Allah et al., April 2007) .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    17
    Citations
    NaN
    KQI
    []