Exosomes from adipose derived mesenchymal stem cells alleviate diabetic osteoporosis in rats through suppressing NLRP3 inflammasome activation in osteoclasts.

2021 
Inflammation is one of major contributors of diabetic osteoporosis. Adipose derived mesenchymal stem cells (AD-MSCs) show great potential to inhibit inflammation. We investigated the anti-osteoporosis role of AD-MSCs-derived exosomes in diabetic osteoporosis and the underlying molecular mechanism. Cellular and animal diabetic osteoporosis models were created through high glucose exposure and streptozotocin injection. AD-MSCs-derived exosomes were isolated and characterized. Pro-inflammatory cytokines and osteoclast markers were determined by ELISA. Bone mineral content and density were detected to evaluate bone loss. qRT-PCR and Western blots were performed to detect the expression of target genes. AD-MSCs-derived exosomes inhibited the secretion of IL-1β and IL-18 in HG treated osteoclasts and restored the bone loss in streptozotocin-induced diabetic osteoporosis rats. Mechanistically, AD-MSCs-derived exosomes suppress NLRP3 inflammasome activation in osteoclasts, and then reduce bone resorption and recover bone loss. AD-MSCs-derived exosomes alleviate diabetic osteoporosis through suppressing NLRP3 inflammasome activation in osteoclasts, which might be a potential cell-free therapeutic approach for diabetes-induced bone loss treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    3
    Citations
    NaN
    KQI
    []