Abstract 2100: Selective inhibition of FGFR4 by INCB062079 is efficacious in models of FGF19- and FGFR4-dependent cancers

2017 
Aberrant signaling through Fibroblast Growth Factor Receptors (FGFR) has been reported in multiple types of human cancers. FGFR4 signaling contributes to the development and progression of subsets of cancer: in approximately 10 percent of hepatocellular carcinoma (HCC), genetic amplification of FGF19, encoding an endocrine FGF ligand that activates FGFR4-KLB receptors, has been reported. In models with this alteration, FGF19-FGFR4 signaling is oncogenic and antagonism of the FGF19-FGFR4 axis has been shown to be efficacious suggesting that selective targeting of FGFR4 may be an effective strategy for malignancies with FGFR4 activation. We describe the preclinical characterization of INCB062079 a potent and selective inhibitor of the FGFR4 kinase. In biochemical assays INCB062079 inhibited FGFR4 with low nM potency and exhibited at least 250-fold selectivity against other FGFR kinases and greater than 800-fold selectivity against a large kinase panel. This selectivity derives from the ability of INCB062079 to bind irreversibly to Cys552, a residue within the active site of FGFR4 that is non-conserved among other FGFR receptors. Covalent binding of INCB062079 to Cys552 was demonstrated using a LC/MS/MS-based proteomic analysis that confirmed specificity for the target Cys. In assays using HCC cells with autocrine production of FGF19, INCB062079 inhibited the autophosphorylation of FGFR4 and blocked signal transduction by FGFR4 to downstream markers of pathway activation. Cancer cell lines that have amplification and expression of FGF19 are uniquely sensitive to growth inhibition by INCB062079 (EC50 less than 200 nM) compared with HCC cell lines or normal cells without FGF19-FGFR4 dependence (EC50 > 5000 nM) confirming selectivity for FGFR4. In vivo, oral administration of INCB062079 inhibited the growth and induced significant regressions of subcutaneous xenograft tumors dependent upon FGFR4 activity at doses that were well-tolerated (10-30 mg/kg BID) and did not result in a significant increase in serum phosphate levels which is observed with FGFR1/2/3 inhibition. Suppression of tumor growth correlated with pharmacodynamic inhibition of FGFR4 signaling. Collectively, these preclinical studies demonstrate that INCB062079 potently and selectively inhibits models of FGF19-FGFR4-dependent cancers in vitro and in vivo, supporting clinical evaluation in patients harboring oncogenic FGFR4 activation. Citation Format: Phillip C.C. Liu, Liang Lu, Kevin Bowman, Matthew C. Stubbs, Liangxing Wu, Darlise DiMatteo, Sindy Condon, Ronald Klabe, Ding-Quan Qian, Xiaoming Wen, Paul Collier, Karen Gallagher, Michael Hansbury, Xin He, Bruce Ruggeri, Yan-ou Yang, Maryanne Covington, Timothy C. Burn, Sharon Diamond-Fosbenner, Richard Wynn, Reid Huber, Wenqing Yao, Swamy Yeleswaram, Peggy Scherle, Gregory Hollis. Selective inhibition of FGFR4 by INCB062079 is efficacious in models of FGF19- and FGFR4-dependent cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2100. doi:10.1158/1538-7445.AM2017-2100
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []