Magnet integrated fabric phase sorptive extraction of selected endocrine disrupting chemicals from human urine followed by high-performance liquid chromatography - photodiode array analysis.
2021
Abstract In current paper, a new advanced modification of fabric phase sorptive extraction is introduced for the first time. This advantageous configuration that integrates the stirring and extraction mechanism into a single sample preparation device was originated by equally considering the beneficial role of the increase of extraction kinetics and more specifically of diffusion on the extraction efficiency of the equilibrium based microextraction techniques and the need for integrating and unite processes for better promotion and implementation of the principles of Green Analytical Chemistry. The resulted magnet integrated fabric phase sorptive extraction (MI-FPSE) device was the spearhead to develop a new analytical methodology for the determination of selected very common endocrine disrupting chemicals as model analytes in human urine by high-performance liquid chromatography-photodiode array analysis. More specifically, the sol-gel Carbowax 20 M coated on hydrophilic cellulose fabric substrate, MI-FPSE device was efficiently employed for the establishment of a new extraction protocol before the chromatographic determination. The sample preparation workflow was methodically optimized in terms of the elution solvent mixture, the volume of the sample, the extraction and the elution time, the stirring speed during the extraction, the ionic strength, and the pH of the sample matrix. The chromatographic separation was performed on a Spherisorb C18 column and a gradient elution program within 14 minutes. Mobile phase consisted of 0.05 ammonium acetate aqueous solution and acetonitrile. The method was validated towards linearity, sensitivity, selectivity, precision, accuracy, and stability. LOD and LOQ ranged between 1.05-1.80 and 3.5-6.0 ng/mL, while %RSD values were found lower than 9.0% in all cases. The method was efficiently applied to the bioanalysis of real samples. All the chosen EDCs were measured at high detection levels. The new MI-FPSE device has demonstrated its performance superiority as a magnet integrated stand-alone extraction device and could be considered as a significant improvement in the field of analytical/bioanalytical sample preparation.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
36
References
0
Citations
NaN
KQI