Vineyard Classification Using Machine Learning Techniques Applied to RGB-UAV Imagery

2020 
In this study machine learning methods were applied to RGB data obtained by an unmanned aerial vehicle (UAV) to assess this effectiveness in vineyard classification. The very high-resolution UAV-based imagery was subjected to a photogrammetric processing allowing the generation of different outcomes: orthophoto mosaic, crop surface model and five vegetation indices. The orthophoto mosaic was used in an object-based image analysis approach to group pixels with similar values into objects. Three machine learning techniques—support vector machine (SVM), random forest (RF) and artificial neural network (ANN)—were applied to classify the data into four classes: grapevine, shadow, soil and other vegetation. The data were divided with 22% (n=240, 60 per class) for training purposes and 78% (n = 850) for testing purposes. The mean value of the objects from each feature were used to create a dataset for prediction. The results demonstrated that both RF and ANN models showed a good performance, yet the RF classifier achieved better results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []