Excess crossovers impede faithful meiotic chromosome segregation in C. elegans

2020 
During meiosis, at least one crossover must form between each pair of homologous chromosomes to ensure their proper partitioning. However, most organisms limit the number of crossovers by a phenomenon called crossover interference; why this occurs is not well understood. Here we investigate the functional consequences of extra crossovers in Caenorhabditis elegans. Using a fusion chromosome that exhibits a high frequency of supernumerary crossovers, we find that essential chromosomal structures are mispatterned, subjecting chromosomes to improper spindle forces and leading to congression and segregation defects. Moreover, we uncover mechanisms that counteract these errors; anaphase I chromosome bridges were often able to resolve in a LEM-3 nuclease dependent manner, and tethers between homologs that persisted were frequently resolved during Meiosis II by a second mechanism. This study thus provides evidence that excess crossovers impact chromosome patterning and segregation, and also sheds light on how these errors are corrected.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    2
    Citations
    NaN
    KQI
    []