Impact of a High-Power Pulsed Plasma Flow with a Surface of High-Temperature Materials

2019 
The objective of this work is to study the behavior of surface layers of high-temperature metals in their interaction with a powerful pulsed plasma flow produced by a high-power ablative pulsed plasma thruster. This plasma generator produces plasma flows with a directed velocity of (7–9) × 106 cm/s, an initial diameter of 1.5–2 cm, and a maximum number density of about 1018 cm–3, as well as a maximum power of 5 GW. The main measured values are the residual temperature of the tungsten specimens and the evaporated mass. Also, metallographic analysis of the specimens was performed. The basis of the research method is to analyze the experimental data with the help of a numerical model describing the heating and evaporation of the material upon absorption of pulsed energy fluxes taking into account the evaporation kinetics based on the Hertz–Knudsen expression. Based on the developed numerical model and the obtained experimental data, the kinetics of evaporation of tungsten at high power fluxes to the surface (up to 1 GW/cm2) is investigated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []