Translocation of metals and its effects in the tomato plants grown on various amendments of tannery waste: evidence for involvement of antioxidants.

2004 
A field experiment was conducted to study the effect of different amendments of tannery sludge on physiological and biochemical parameters of tomato plant (Lycopersicon esculentum L. Mill). The accumulation of metals (Cr, Fe) in different parts of tomato plants grown on tannery sludge amended soil increased in a concentration and duration-dependent manner. The accumulation of both the metals was found lowest in the fruits of the plant. The statistical analysis of the results showed an increase in chlorophyll and protein contents in lower sludge amendment ratio at all exposures followed by a decrease at highest (100%) sludge amendment ratio. Lipid peroxidation enhanced in both root and leaves of sludge grown plants of tomato at all the sludge amendments and exposure periods, which is evidenced by increased malondialdehyde content, however the maximum increase was found in the roots (43.63%) and leaves (56.66%) of the plant grown on 100% tannery sludge at 60 d, over respective controls. The level of antioxidants, cysteine, non-protein thiol and ascorbic acid increased in the sludge grown plants of tomato to cope up with stress induced by the excess amount of the heavy metals present in the tannery sludge. The maximum increase was found in cysteine content (75.53% in the leaves), non-protein thiol content (92.68% in the roots) and ascorbic acid content (29.66% in the roots) of the plant at 75% tannery sludge after 30 d. The tomato plants were found well adopted for minimizing damage induced by reactive oxygen species, when grown on tannery sludge amendments in the present study.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    98
    Citations
    NaN
    KQI
    []