시간흐름을 고려한 특징 추출과 군집 분석을 이용한 헬스리스크 관리

2021 
본 논문에서는 시간 흐름을 고려한 특징추출과 군집분석을 이용한 헬스 리스크 관리를 제안한다. 제안하는 방법은 세단계로 진행한다. 첫 번째는 전처리 및 특징추출 단계이다. 이는 웨어러블 디바이스를 이용하여 라이프로그를 수집하여 불완전데이터, 에러, 잡음, 모순된 데이터를 제거하며 결측 값을 처리한다. 그 다음 특징추출을 위해 주성분 분석을 통해 중요 변수를 선택하고, 상관계수와 공분산을 통해 데이터 간의 관계와 유사한 데이터들의 분류를 진행한 다. 또한 라이프로그에서 추출한 특징을 분석하기 위해 시간의 흐름을 고려하여 K-means 알고리즘을 통해 동적 군집 을 진행한다. 새로운 데이터는 오차 제곱합의 증가분을 기반으로 유사성 거리 측정 방법을 통해 군집을 진행하고, 시간 의 흐름을 고려하여 군집에 대한 정보를 추출한다. 따라서 특징 군집을 통해 헬스 의사결정 시스템을 이용하여 신체적 특성, 생활습관, 질병여부, 헬스케어 이벤트 발생위험, 예상 정도 등의 요소를 통해 리스크를 관리할 수 있다. 성능평가 는 Precision, Recall, F-measure을 사용하여 제안하는 방법과 퍼지방법, 커널기반 방법을 비교한다. 평가결과 제안 하는 방법이 우수하게 평가된다. 따라서 제안하는 방법을 통해 유병자와의 유사도를 이용하여 정확한 사용자의 잠재적 건강 위험을 예측 및 적절한 관리가 가능하다.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []