Development of 2-Chlorophenol Sensor Based on a Fiber Optic Oxygen Transducer via Oxidation Reaction Catalyzed by Tetranitro Iron (II) Phthalocyanine

2014 
This paper develops a 2-chlorophenol sensor based on the improvement of a fiber optic oxygen transducer. The measurement of a sensor depends on the principle of stoichiometric relationship between dissolved oxygen and 2-chlorophenol in catalytic oxidation reaction. Specifically, oxygen was consumed fast in oxidation of 2-chlorophenol catalyzed by tetranitro iron (II) phthalocyanine (TNFe(II)Pc), and the concentration changes of dissolved oxygen could be measured by a fiber optic oxygen transducer. The phase-modulation technology was employed to record the signals of phase delay responding to the aerobic oxidation process catalyzed by TNFe(II)Pc. In addition, the sensing performance of this sensor could be demonstrated by a modified Stern-Volmer equation, φ = 0.12 + 3710[2 - CP] (R 2 = 0.9949), where φ and [2-CP] represent the phase delay and concentration of 2-chlorophenol, respectively. The detection limit of this sensor is 8.0 × 10 -7 M. In addition, this sensor shows the satisfactory results compared with that of HPLC method for detection of the samples from Changjiang river.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    2
    Citations
    NaN
    KQI
    []