21 cm Forest Constraints on Primordial Black Holes.

2021 
Primordial black holes (PBHs) as part of the Dark Matter (DM) would modify the evolution of large-scale structures and the thermal history of the universe. Future 21 cm forest observations, sensitive to small scales and the thermal state of the Inter Galactic Medium (IGM), could probe the existence of such PBHs. In this article, we show that the shot noise isocurvature mode on small scales induced by the presence of PBHs can enhance the amount of low mass halos, or minihalos, and thus, the number of 21 cm absorption lines. However, if the mass of PBHs is as large as $M_{\rm PBH}\gtrsim 10 \, M_\odot$, with an abundant enough fraction of PBHs as DM, $f_{\rm PBH}$, the IGM heating due to accretion onto the PBHs counteracts the enhancement due to the isocurvature mode, reducing the number of absorption lines instead. The concurrence of both effects imprints distinctive signatures in the number of absorbers, allowing to bound the abundance of PBHs. We compute the prospects for constraining PBHs with future 21 cm forest observations, finding achievable competitive upper limits on the abundance as low as $f_{\rm PBH} \sim 10^{-3}$ at $M_{\rm PBH}= 100 \, M_\odot$, or even lower at larger masses, in unexplored regions of the parameter space by current probes. The impact of astrophysical X-ray sources on the IGM temperature is also studied, which could potentially weaken the bounds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    3
    Citations
    NaN
    KQI
    []