Sequence specificity of illegitimate plasmid recombination in Bacillus subtilis: Possible recognition sites for DNA topoisomerase I

1998 
Previous work in our group indicated that structural plasmid instability in Bacillus subtilis is often caused by illegitimate recombination between non-repeated sequences, characterized by a relatively high AT content. Recently we developed a positive selection vector for analysis of plasmid recombination events in B.subtilis which enables measurement of recombination frequencies without interference of selective growth differences of cells carrying wild-type or deleted plasmids, Here we have used this system to further analyse the sequence specificity of illegitimate plasmid recombination events and to assess the role of the host-encoded DNA topoisomerase I enzyme in this process. Several lines of evidence suggest that single-strand DNA nicks introduced by DNA topoisomerase I are a major source of plasmid deletions in pGP100, First, strains overproducing DNA topoisomerase I showed increased levels of plasmid deletion. Second, these deletions occurred predominantly (> 90% of the recombinants) between non-repeated DNA sequences, the majority of which resemble potential DNA topoisomerase I target sites. Sequence alignment of 66 deletion end-points confirmed the previously reported high AT content and, most importantly, revealed a highly conserved C residue at position -4 relative to the site of cleavage at both deletion termini. Based on these genetic data we propose the following putative consensus cleavage site for DNA topoisomerase I of B.subtilis: 5'-A/(T)CAT(A)/(T)TA(A)/(A)(T)/(T)A-3'.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    10
    Citations
    NaN
    KQI
    []