A novel mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor causes hereditary 1,25-dihydroxyvitamin D-resistant rickets

1996 
Mutations in the vitamin D receptor (VDR) result in hereditary 1,25-dihydroxyvitamin D3-resistant rickets (HVDRR), an autosomal recessive disease caused by target organ resistance to the action of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. In this study, we investigated the molecular basis of HVDRR in a child from Saudi Arabia who was previously shown to be resistant to 1,25-(OH)2D3 action, but whose cultured skin fibroblasts exhibited normal [3H]1,25-(OH)2D3 binding. Using the PCR, exons 2 and 3 of the VDR gene that encode the DNA-binding region of the receptor were amplified and sequenced. A novel point mutation at nucleotide 252 in exon 2 of the VDR was identified. This missense mutation (GGC to GAC) resulted in the conversion of glycine to aspartic acid at amino acid position 46 (G46D), located at the base of the first zinc finger. This single base change was introduced into wild-type VDR complementary DNA by site-directed mutagenesis, and the mutant VDR was then expressed in COS-1 cells. The expressed ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    59
    Citations
    NaN
    KQI
    []