Biodegradation of phenol and dyes with horseradish peroxidase covalently immobilized on functionalized RGO-SiO2 nanocomposite.

2020 
Abstract Horseradish peroxidase (HRP) was immobilized onto a functionalized reduced graphene oxide-SiO2 through the covalent bonding process. By using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR), the formed nanocomposites were characterized. The kinetic parameters including the catalytic constant, kcat, and the catalytic efficiency, kcat/Km, increased 5.5 and 6 times, respectively, after immobilization. The circular dichroism analysis demonstrated that the α-helical content increased from 39% to 46% after immobilization. The immobilization improved the reusability of HRP as 70% of initial activity retained after 10 cycles. Due to the buffering effect, the immobilized HRP was less sensitive to pH changes as compared to the free HRP. At temperature 40 °C and during 90 min, the immobilized HRP retained 90% of the initial activity while 70% of initial activity remained for the free HRP. After 35-day storage, no reduction in the activity was observed for the immobilized HRP. The removal efficiency for phenol concentration (2500 mg/L) obtained 100% and 50% for the immobilized and free HRP, respectively. The results showed that the immobilized HRP promoted the dyes decolorization from 2-fold until 26-fold as compared to the free HRP. The decolorization efficiencies reached 100% for most dyes in the case of immobilized HRP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    4
    Citations
    NaN
    KQI
    []