Combined Inhibition of CCL2, CX3CR1, and CCR5 Abrogates Ly6Chi and Ly6Clo Monocytosis and Almost Abolishes Atherosclerosis in Hypercholesterolemic Mice

2008 
Background— Monocytes are critical mediators of atherogenesis. Deletion of individual chemokines or chemokine receptors leads to significant but only partial inhibition of lesion development, whereas deficiency in other signals such as CXCL16 or CCR1 accelerates atherosclerosis. Evidence that particular chemokine pathways may cooperate to promote monocyte accumulation into inflamed tissues, particularly atherosclerotic arteries, is still lacking. Methods and Results— Here, we show that chemokine-mediated signals critically determine the frequency of monocytes in the blood and bone marrow under both noninflammatory and atherosclerotic conditions. Particularly, CCL2-, CX3CR1-, and CCR5-dependent signals differentially alter CD11b+ Ly6G− 7/4hi (also known as Ly6Chi) and CD11b+ Ly6G− 7/4lo (Ly6Clo) monocytosis. Combined inhibition of CCL2, CX3CR1, and CCR5 in hypercholesterolemic, atherosclerosis-susceptible apolipoprotein E–deficient mice leads to abrogation of bone marrow monocytosis and to additive reducti...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    517
    Citations
    NaN
    KQI
    []