Two linearized schemes for time fractional nonlinear wave equations with fourth-order derivative

2020 
In this paper, two linearized schemes for time fractional nonlinear wave equations (TFNWEs) with the space fourth-order derivative are proposed and analyzed. To reduce the smoothness requirement in time, the considered TFNWEs are equivalently transformed into their partial integro-differential forms by the Riemann–Liouville integral. Then, the first scheme is constructed by using piecewise rectangular formulas in time and the fourth-order approximation in space. And, this scheme can be fast evaluated by the sum-of-exponentials technique. The second scheme is developed by using the Crank–Nicolson technique combined with the second-order convolution quadrature formula. By the energy method, the convergence and unconditional stability of the proposed schemes are proved rigorously. Finally, numerical experiments are given to support our theoretical results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    1
    Citations
    NaN
    KQI
    []