Design and Analysis of a Fully Actuated Cable-Driven Joint for Hyper-Redundant Robots with Optimal Cable Routing

2022 
Cable-driven hyper-redundant robots have been adopted in many fields for accessing harsh and confined environments that maybe inaccessible or dangerous for humans. The cable actuation strategy makes the robot hardware safer and increases the robot payload reducing its weight. In this paper, a novel design of a fully actuated cable-driven hyper-redundant robot has been proposed. This solution is a pulleyless design that decreases the mechanical complexity, allowing to reduce the robot arm diameter and avoid tension losses on the cables during the motion. Three different joint designs have been taken into account and experiments have been carried to study their performances. The kinematics for n-joint robot has been formulated and a cable routing optimization method based on genetic algorithm have been proposed and applied to a five-joints robot.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []