Design of Distributed End-Effectors for Caging-Specialized Manipulator

2013 
In this paper, we propose a novel design of end-effectors that is specialized in caging manipulation. Caging manipulation has several advantages comparing with traditional grasping manipulation. For example, caging can allow small gap/margin between end-effectors and a target object, making the manipulator relieved from constant contact and precise control. Therefore, caging manipulator can avoid many problems from dynamics. Regardless of its advantages, intelligent caging manipulators have not be realized. This is because, for one thing, it may demand many actuators to realize flexible geometrical constraint (caging), for the other thing, kinematic constraints of a general purpose manipulator prevents us from applying direct caging approaches.We address this problem by introducing a novel design/framework of end-effectors that is inspired by ROBOTWORLD. The framework utilizes permanent magnet inductive traction method. The method is suitable for coexistence of multiple robots and for reduction of actuator number by sharing the same actuators.We discuss the concept and the basic framework of the proposed caging manipulator and development of a finger component prototype.After that we conduct basic experiments to evaluate the feasibility of caging manipulation and to reveal the obstacles (challenges) for our manipulator.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    4
    Citations
    NaN
    KQI
    []