Three-dimensional locomotion control of single-legged robot: Resonance hopping and running direction

2016 
This study proposes a locomotion controller for a single-legged robot. The locomotion controller comprises five parts: virtual spring, height control, forward velocity control, body attitude control, and angular momentum control. First, we propose an effective method called a virtual spring to generate a springy force using a linear actuator. Two virtual springs are adopted to compute the energy exchange and to compensate the energy loss during hopping. A simple and intuitive method is proposed to implement resonance oscillation in terms of energy loss. A height controller is proposed based on the resonance oscillation using a virtual spring. In addition, a running direction controller, which has never been resolved in previous studies, is proposed. This novel controller can remove the unexpected angular momentum about the yaw direction during running. All of the proposed algorithms and methods are validated through dynamic simulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []