Source Characterization of Airborne Pollutant Emissions by Hybrid Metaheuristic/Gradient-based Optimization Techniques

2020 
Abstract We propose a methodology to estimate single and multiple emission sources of atmospheric contaminants. It combines hybrid metaheuristic/gradient-descent optimization techniques and Tikhonov-type regularization. The dispersion problem is solved by the Galerkin/Least-squares finite element formulation, which allows more realistic modeling. The accuracy of the proposed inversion model is tested under different contexts with experimental data. To identify single and multiple emissions, we use experimental field data. We consider different configurations for both the Tikhonov-type functional and optimization techniques. Several single and composite data misfit functions are tested. We also use a discrepancy-based choice rule for the regularization parameter. The resulting inversion tool is highly versatile and presents accurate results under different contexts with a competitive computational cost.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    4
    Citations
    NaN
    KQI
    []