Clustering of grape yield maps to delineate site-specific management zones.
2011
Zonal management in vineyards requires the prior delineation of stable yield zones within the parcel. Among the different methodologies used for zone delineation, cluster analysis of yield data from several years is one of the possibilities cited in scientific literature. However, there exist reasonable doubts concerning the cluster algorithm to be used and the number of zones that have to be delineated within a field. In this paper two different cluster algorithms have been compared ( k -means and fuzzy c -means) using the grape yield data corresponding to three successive years (2002, 2003 and 2004), for a ‘Pinot Noir’ vineyard parcel. Final choice of the most recommendable algorithm has been linked to obtaining a stable pattern of spatial yield distribution and to allowing for the delineation of compact and average sized areas. The general recommendation is to use reclassified maps of two clusters or yield classes (low yield zone and high yield zone) and, consequently, the site-specific vineyard management should be based on the prior delineation of just two different zones or sub-parcels. The two tested algorithms are good options for this purpose. However, the fuzzy c -means algorithm allows for a better zoning of the parcel, forming more compact areas and with more equilibrated zonal differences over time.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
17
References
26
Citations
NaN
KQI