Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction

2018 
Triblock copolymer micelles coated with melamine-formaldehyde resin were self-assembled into closely packed two-dimensional (2D) arrangements on the surface of graphene oxide sheets. Carbonizing these structures created a 2D architecture composed of reduced graphene oxide (rGO) sandwiched between two monolayers of sub-40 nm diameter hollow nitrogen-doped carbon nanospheres (N-HCNS). Electrochemical tests showed that these hybrid structures had better performance for oxygen reduction compared to physically mixed rGO and N-HCNS that were not chemically bonded together. Further impregnation of the sandwich structures with iron (Fe) species followed by carbonization yielded Fe1.6-N-HCNS/rGO-900 with a high specific surface area (968.3 m2 g–1), a high nitrogen doping (6.5 at%), and uniformly distributed Fe dopant (1.6 wt %). X-ray absorption fine structure analyses showed that most of the Fe in the nitrogen-doped carbon framework is composed of single Fe atoms each coordinated to four N atoms. The best Fe1.6-N...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    220
    Citations
    NaN
    KQI
    []