Periostin, discovered by nano-flow liquid chromatography and mass spectrometry, is a novel marker of diabetic retinopathy

2010 
Diabetes can lead to serious microvascular complications including proliferative diabetic retinopathy (PDR), the leading cause of blindness in adults. Recent studies using gene array technology have attempted to apply a hypothesis-generating approach to elucidate the pathogenesis of PDR, but these studies rely on mRNA differences, which may or may not be related to significant biological processes. To better understand the basic mechanisms of PDR and to identify potential new biomarkers, we performed shotgun liquid chromatography (LC)/tandem mass spectrometry (MS/MS) analysis on pooled protein extracts from neovascular membranes obtained from PDR specimens and compared the results with those from non-vascular epiretinal membrane (ERM) specimens. We detected 226 distinct proteins in neovascular membranes and 154 in ERM. Among these proteins, 102 were specific to neovascular membranes and 30 were specific to ERM. We identified a candidate marker, periostin, as well as several known PDR markers such as pigment epithelium-derived factor (PEDF). We then performed RT-PCR using these markers. The expression of periostin was significantly up-regulated in proliferative membrane specimens. Periostin induces cell attachment and spreading and plays a role in cell adhesion. Proteomic analysis by LC/MS/MS, which permits accurate quantitative comparison, was useful in identifying new candidates such as periostin potentially involved in the pathogenesis of PDR.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    16
    Citations
    NaN
    KQI
    []