Short disordered protein segment regulates cross-species transmission of a yeast prion

2020 
Soluble prion proteins contingently encounter foreign prion aggregates, leading to cross-species prion transmission. However, how its efficiency is regulated by structural fluctuation of the host soluble prion protein remains unsolved. In the present study, through the use of two distantly related yeast prion Sup35 proteins, we found that a specific conformation of a short disordered segment governs interspecies prion transmissibility. Using a multidisciplinary approach including high-resolution NMR and molecular dynamics simulation, we identified critical residues within this segment that allow interspecies prion transmission in vitro and in vivo, by locally altering dynamics and conformation of soluble prion proteins. Remarkably, subtle conformational differences caused by a methylene group between asparagine and glutamine sufficed to change the short segment structure and substantially modulate the cross-seeding activity. Thus, our findings uncover how conformational dynamics of the short segment in the host prion protein impacts cross-species prion transmission. More broadly, our study provides mechanistic insights into cross-seeding between heterologous proteins. The side chain interaction within the short disordered segment of yeast prion protein Sup35 could affect the conformation of the main chain, alter the transmission barrier between species and regulate its cross-seeding activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    7
    Citations
    NaN
    KQI
    []