Quantum chemical studies on solvents for post-combustion carbon dioxide capture: calculation of pKa and carbamate stability of disubstituted piperazines.

2014 
Piperazine is a widely studied solvent for post-combustion carbon dioxide capture. To investigate the possibilities of further improving this process, the electronic and steric effects of CH3, CH2F, CH2OH, CH2NH2, COCH3, and CN groups of 2,5-disubstituted piperazines on the pKa and carbamate stability towards hydrolysis are investigated by quantum chemical methods. For the calculations, B3LYP, M11L, and spin-component-scaled MP2 (SCS-MP2) methods are used and coupled with the SMD solvation model. The experimental pKa values of piperazine, 2-methylpiperazine, and 2,5-dimethylpiperazine agree well with the calculated values. The present study indicates that substitution of CH3, CH2NH2, and CH2OH groups on the 2- and 5-positions of piperazine has a positive impact on the CO2 absorption capacity by reducing the carbamate stability towards hydrolysis. Furthermore, their higher boiling points, relative to piperazine itself, will lead to a reduction of volatility-related losses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    3
    Citations
    NaN
    KQI
    []