Solvent-cast polymeric films from pectin and Eudragit® NE 30D for transdermal drug delivery systems

2021 
In this study, solvent-cast polymeric films containing ionic liquid lidocaine/aspirin for transdermal patches were developed. Solvent-cast polymeric films were prepared from two polymers, pectin and Eudragit® NE 30D, by drying the polymeric solution in a hot air oven at 70 ± 3 °C for 10 h. Glycerin was used as a plasticizer. Lidocaine and aspirin were prepared in ionic liquid form and loaded into the patches. The physicomechanical properties of the films were characterized by texture analysis, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction. A scanning electron microscope was used to photograph the surfaces of solvent-cast polymeric films. Eudragit® NE 30D significantly decreased the toughness and rigidity of the films. The transdermal patches were in the amorphous state, and their thermal properties were not changed from blank polymeric films. The surfaces of transdermal patches were rougher than blank polymeric films and revealed the distribution of the drug. Eudragit® NE 30D significantly decreased the trends of entrapment efficiency and in vitro release of lidocaine and aspirin drugs. The kinetic release observed in vitro fitted to Higuchi’s model rather than zero and first order models, indicating that a diffusion mechanism governed the release of the drug from the patch. Thus, the solvent-cast polymeric films from two polymers, pectin and Eudragit® NE 30D, are suitable for transdermal patches loaded with ionic liquid lidocaine/aspirin.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []