Bipolar resistive switching in metal-insulator-semiconductor nanostructures based on silicon nitride and silicon oxide

2018 
Bipolar resistive switching in metal-insulator-semiconductor (MIS) capacitor-like structures with an inert Au top electrode and a Si3N4 insulator nanolayer (6 nm thick) has been observed. The effect of a highly doped n +-Si substrate and a SiO2 interlayer (2 nm) is revealed in the changes in the semiconductor space charge region and small-signal parameters of parallel and serial equivalent circuit models measured in the high- and low-resistive capacitor states, as well as under laser illumination. The increase in conductivity of the semiconductor capacitor plate significantly reduces the charging and discharging times of capacitor-like structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    6
    Citations
    NaN
    KQI
    []