Influence of nucleotide excision repair on mitoxantrone cytotoxicity

2016 
Abstract Mitoxantrone (MXT) is an anticancer drug structurally related to anthracyclines, such as doxorubicin (DOX). Here we report that cells deficient in nucleotide excision repair (NER) are very sensitive to MXT. However, cells deficient in each of the NER sub-pathways – transcription coupled repair (deficient in CSB protein) and global genome repair (deficient in XPC protein) – demonstrate a difference in sensitivity from each other and also show different responses in cell cycle profile, DNA synthesis and topo II DNA complex formation upon MXT treatment. XPC-deficient cells are slightly more resistant than CSB-deficient cells, and in the same way as MRC5 NER-proficient cells, show G2/M arrest, normal DNA synthesis rate and a pattern of formation of complexes similar to proficient cells, whereas CSB-deficient cells show accumulation in S phase, reduced DNA synthesis and a more intense signal of topo II DNA complexes, indicating that they remain longer in these cells. Complementation of CSB mutant cells with CSB rescue MXT-induced sensitivity and also a decrease in the signal intensity of the complexes, suggest that resolution of these lesions would take place. Taken together, our results indicate that NER proteins are implicated in the response to MXT and that CSB protein has a key role in processing MXT-induced topo II DNA complexes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    7
    Citations
    NaN
    KQI
    []