Effect of Kernel Function to Magnetic Map and Evaluation of Localization of Magnetic Navigation

2020 
Localization is one of the most fundamental requirements for the use of autonomous robots. In this work, we use magnetic-based localization; which, while not as accurate as laser rangefinder or camera-based systems, is not affected by a large number of people on its surrounding, making it ideal for applications where this is expected, such as service robotics in supermarkets, hotels, etc. Magnetic-based localization systems first create a magnetic map of the environment using magnetic samples acquired a priori. An approach for generating this map is to use collected data to training a Gaussian Process model. Gaussian Processes are non-parametric, data-drive models, where the most important design choice is the selection of an adequate kernel function. The purpose of this study is to improve the accuracy of the magnetic localization by testing several kernel functions and experimentally verifying its effects on robot localization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    2
    Citations
    NaN
    KQI
    []