Cyclic Bond Formation of Rhododendrol-quinone and Dopamine-quinone: Effects of Proton Rearrangement
2018
The synthesis of melanin pigment involves intramolecular cyclic bond formation between benzene ring and side chain moieties of o-quinone as a necessary process for o-quinone conversion into a cyclic catechol, i.e., cyclization. Dopamine (DA)-quinone and rhododendrol (RD)-quinone undergo cyclic C–N and C–O bond formation, respectively. A previous theoretical study revealed that RD-quinone requires hydroxy deprotonation or quinonic protonation for cyclic C–O bond formation. In this study, the theoretical model was extended to an (H2O)n-quinone interacting system (\(n = 3,4\)) so that protonation and deprotonation governed by H2O molecules are incorporated. Density functional theory (DFT)-based simulation showed that RD-quinone can undergo proton-rearrangement-assisted cyclic C–O bond formation with a moderate barrier height which is still higher than that for DA-quinone cyclic bond formation. The DFT-based simulation also showed that both DA-quinone and RD-quinone can undergo proton-rearrangement-assisted C...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
3
Citations
NaN
KQI