Human Brain Region-Specific Alternative Splicing of TRPC3, the Type 3 Canonical Transient Receptor Potential Non-Selective Cation Channel

2019 
Canonical transient receptor potential (TRPC) non-selective cation channels are broadly expressed by neurons, glia and the microvasculature of the brain. In neurons and astrocytes, these ion channels are coupled to group I metabotropic glutamate receptors via Gαq–phospholipase C signal transduction. In the mouse cerebellar Purkinje neurons, TRPC channels assembled as tetramers of TRPC3 subunits exclusively mediate this glutamatergic signalling mechanism and regulation of alternative splicing results in dominance of a high Ca2+ conducting TRPC3c isoform. This regional control of TRPC3 transcript type likely has physiological and pathophysiological sequelae. The current study provides a quantitative comparison of the TRPC3c splice variant and the TRPC3b full-length isoform expression across seven regions of the human brain. This shows that the cerebellum has the highest expression level of both isoforms and that regulation of alternative splicing results in a higher propensity of the TRPC3c isoform in the cerebellum relative to the TRPC3b isoform (in a 1:3 ratio). This compares with the other regions (motor cortex, hippocampus, midbrain subregions, pons and medulla) where the prevalence of TRPC3c relative to TRPC3b is typically less than half as abundant. The finding here of a bias in the high-conductance TRPC3c isoform in the cerebellum is consistent with the enhanced vulnerability of the cerebellum to ischaemic injury.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    3
    Citations
    NaN
    KQI
    []