Computational Bifurcations Occurring on Red Fixed Components in the λ-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map

2020 
Optimal fourth-order multiple-root finders with parameter λ were conjugated via the Mobius map applied to a simple polynomial function. The long-term dynamics of these conjugated maps in the λ -parameter plane was analyzed to discover some properties of periodic, bounded and chaotic orbits. The λ -parameters for periodic orbits in the parameter plane are painted in different colors depending on their periods, and the bounded or chaotic ones are colored black to illustrate λ -dependent connected components. When a red fixed component in the parameter plane branches into a q-periodic component, we encounter geometric bifurcation phenomena whose characteristics determine the desired boundary equation and bifurcation point. Computational results along with illustrated components support the bifurcation phenomena underlying this paper.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []