A Collaboratively Polar-Conductive Interface for Accelerating Polysulfides Redox Conversion

2019 
In order to alleviate the inferior cycle stability of sulfur cathode, a self-assembled SnO2-doped manganese silicate nanobubbles (SMN) is designed as sulfur/polysulfides host to immobilize the intermediate Li2Sx, and nitrogen-doped carbon (N-C) is coated on SMN (SMN@C). The exquisite N-C conductive network could not only provides sufficient free space for the volume expansion during the phase transition of solid sulfur into lithium sulfide, but also reduces Rct of SMN. During cycling, the soluble polysulfide could be fastened by the silicate with oxygen-rich functional group and hetero nitrogen atoms through chemical bonding, enabling a confined shuttle effect. The synergistic effect between N-C and SMN could also effectively facilitate the interconversion between lithium polysulfides and Li2S, reducing the potential barrier and accelerating the redox kinetics. With an areal sulfur loading of 2 mg/cm2, the S-SMN@C cathodes demonstrate a high initial capacity of 1204 mAh/g, i.e., 72% sulfur utilization at ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    4
    Citations
    NaN
    KQI
    []