Synthesis of N-doped graphene quantum dots by pulsed laser ablation with diethylenetriamine (DETA) and their photoluminescence

2017 
We report a facile, fast, and one-step approach to prepare N-doped graphene quantum dots (GQDs) using pulsed laser ablation with diethylenetriamine (DETA). The synthesized N-doped GQDs with an average size of about 3.4 nm and an N/C atomic ratio of 26% have been demonstrated. Compared to pristine GQDs, the N-doped GQDs emit enhanced photoluminescence (PL) with a factor as high as 66, originated from the enhanced densities of pyridinic and graphitic N. The temperature-dependent PL of the N-doped GQDs was studied from cryogenic to room temperature. An anomalous temperature dependence of PL intensity was observed for the N-doped GQDs, which was ascribed to a carrier transfer mechanism from a dopant-induced state to the quantum-dot emitting state.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    32
    Citations
    NaN
    KQI
    []