Skyrmion lattice creep at ultra-low current densities

2020 
Magnetic skyrmions are well-suited for encoding information because they are nano-sized, topologically stable, and only require ultra-low critical current densities jc to depin from the underlying atomic lattice. Above jc skyrmions exhibit well-controlled motion, making them prime candidates for race-track memories. In thin films thermally-activated creep motion of isolated skyrmions was observed below jc as predicted by theory. Uncontrolled skyrmion motion is detrimental for race-track memories and is not fully understood. Notably, the creep of skyrmion lattices in bulk materials remains to be explored. Here we show using resonant ultrasound spectroscopy—a probe highly sensitive to the coupling between skyrmion and atomic lattices—that in the prototypical skyrmion lattice material MnSi depinning occurs at $${j}_{c}^{* }$$ that is only 4 percent of jc. Our experiments are in excellent agreement with Anderson-Kim theory for creep and allow us to reveal a new dynamic regime at ultra-low current densities characterized by thermally-activated skyrmion-lattice-creep with important consequences for applications. Magnetic skyrmions are nanosized and topologically-protected objects that exhibit well-controlled motion under applied current making them prime candidates for race-track memories. The author’s study skyrmion lattice creep that is detrimental for memory applications using ultrasound spectroscopy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    4
    Citations
    NaN
    KQI
    []