Performance analysis and modeling of high efficiency medium power Resonant Dual Active Bridge converter for wireless power transfer

2016 
Demand for the contactless power transfer or wireless power transfer is increasing. Wireless power can be achieved across large air gap which will be backbone for the future automation industry. This paper presents the analysis, design and simulation studies of the CLC based Resonant Dual Active Bridge (RDAB) topology for the inductive wireless power transfer application in the hybrid electric vehicle. The main advantage of RDAB topology to the Conventional Dual Active Bridge (DAB) topology is the requirement of less reactive power due to the “Resonance” created by CL (capacitor + inductor) circuit in the primary and a Capacitor in the secondary side of the high frequency transformer. The bridge current (switch current) is reduced due to the low reactive power and it helps in achieving high efficiency due to reduction in the conduction loss as well as power factor of the model. Reactive power is supplied by the capacitor in the primary side of the transformer. RDAB also provides Zero Voltage Switching at wide range of load. The complete system is analyzed and simulated in PSIM 9.1. The details analysis, simulation studies and comparison of the RDAB topology with the conventional dual active bridge topology is presented in the paper.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    1
    Citations
    NaN
    KQI
    []