Morphology Control in AgCu Nanoalloy Synthesis by Molecular Cu(I) Precursors

2019 
As nanoparticle preparation methods employing bottom-up procedures rely on the use of molecular precursors, the chemical composition and bonding of these precursors have a decisive effect on nanoparticle formation and their resulting morphology and properties. We synthesized the Cu(I) complexes [Cu(PPh3)2(bea)] (1, bea = benzoate) and [Cu(PPh3)3(Hphta)] (2, phta = phthalate) by reducing the corresponding Cu(II) mono- and dicarboxylates with triphenylphosphine. We characterized 1 and 2 by single-crystal X-ray diffraction analysis, elemental analyses, infrared and nuclear magnetic resonance spectroscopy, and mass spectrometry and obtained complete information about their structures in the solid state and in solution. Also, we examined their thermal stability in oleylamine and determined their decomposition temperatures to be used as the minimal reaction temperature in metal nanoparticle synthesis. The complexes 1 and 2 differ in the number of reducing PPh3 ligands and the strength of carboxylate bonding to ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    2
    Citations
    NaN
    KQI
    []