Pyrolysis of the Simplest Carbohydrate, Glycolaldehyde (CHO-CH2OH), and Glyoxal in a Heated Microreactor

2016 
Both glycolaldehyde and glyoxal were pyrolyzed in a set of flash-pyrolysis microreactors. The pyrolysis products resulting from CHO–CH2OH and HCO–CHO were detected and identified by vacuum ultraviolet (VUV) photoionization mass spectrometry. Complementary product identification was provided by argon matrix infrared absorption spectroscopy. Pyrolysis pressures in the microreactor were about 100 Torr, and contact times with the microreactors were roughly 100 μs. At 1200 K, the products of glycolaldehyde pyrolysis are H atoms, CO, CH2═O, CH2═C═O, and HCO–CHO. Thermal decomposition of HCO–CHO was studied with pulsed 118.2 nm photoionization mass spectrometry and matrix infrared absorption. Under these conditions, glyoxal undergoes pyrolysis to H atoms and CO. Tunable VUV photoionization mass spectrometry provides a lower bound for the ionization energy (IE)(CHO–CH2OH) ≥ 9.95 ± 0.05 eV. The gas-phase heat of formation of glycolaldehyde was established by a sequence of calorimetric experiments. The experimental...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    7
    Citations
    NaN
    KQI
    []