X-ray diffraction and Mossbauer studies on superparamagnetic nickel ferrite (NiFe2O4) obtained by the proteic sol–gel method

2015 
Abstract Nickel ferrite (NiFe 2 O 4 ) nanoparticles were synthesized by the proteic sol–gel method at synthesis temperature of 250 °C, 300 °C and 400 °C, with the objective of obtaining superparamagnetic nanoparticles. Thermogravimetric analysis (TGA) and temperature-programed oxidation (TPO) presented peaks around 290 °C indicating that nickel ferrite was forming at this temperature. X-ray powder diffraction (XRPD) confirmed that the polycrystalline sample was single phased NiFe 2 O 4 with space group Fd3m. Scherrer equation applied to the diffraction patterns and transmission electron microscopy (TEM) images showed that the size of the nanoparticles ranged from 9 nm to 13 nm. TEM images also revealed that the nanoparticles were agglomerated, which was supported by the low values of surface area provided by the Brunauer-Emmet-Teller (BET) method. Mossbauer spectroscopy presented spectra composed of a superposition of three components: a sextet, a doublet and a broad singlet pattern. The sample synthetized at 300 °C had the most pronounced doublet pattern characteristic of superparamagnetic nanoparticles. In conclusion, this method was partially successful in obtaining superparamagnetic nickel ferrite nanoparticles, in which the synthetized samples were a mixture of nanoparticles with blocking temperature above and below room temperature. Magnetization curves revealed a small hysteresis, supporting the Mossbauer results. The sample with the higher concentration of superparamagnetic nanoparticles being the one synthetized at 300 °C.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    23
    Citations
    NaN
    KQI
    []