Anti-toll-like receptor 2 antibody ameliorates hepatic injury, inflammation, fibrosis and steatosis in obesity-related metabolic disorder rats via regulating MAPK and NF-κB pathways

2020 
Abstract Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide, which includes a spectrum of histological liver changes. Non-alcoholic steatohepatitis (NASH) is considered to be the progressive subtype of NAFLD, which is characterized by lobular inflammation and cellular ballooning on the basis of steatosis. There is a critical need to develop novel and effective therapeutic approaches for NAFLD/NASH. The activation of toll-like receptor 2 (TLR2) signaling pathway plays a key role in high-fat-related inflammation, triggering the occurrence and development of NASH. Herein, the anti-TLR2 monoclonal antibody (TLR2 mAb) was prepared and investigated for its ability to ameliorate the inflammatory response in vivo and in vitro. The anti-inflammatory role of TLR2 mAb in vitro was examined in NR8383 macrophage cells and THP-1 derived macrophage cells. For confirmation in vivo, three groups of SD rats were treated for 20 weeks: rats in the control were fed with a standard diet; rates in the IgG and TLR2 mAb groups were fed with a high-fat diet and with IgG or TLR2 mAb, respectively. Liver tissue and serum were collected for further analysis. Results showed that after 4-week treatment with TLR2 mAb, metabolic parameters in rats were improved markedly (body weight, fasting blood glucose level, liver steatosis, inflammatory response and fibrosis). Moreover, western blotting demonstrated that the TLR2 mAb blocked MAPKs and NF-κB activation, and inhibited the expression of inflammatory factors in rat liver tissue. These effects suggested that TLR2 mAb could improve HFD-induced hepatic injury, inflammation, fibrosis and steatosis by suppressing inflammatory response and regulating the hepatic MAPKs and NF-κB signaling pathways. This suggests that TLR2 may be a novel therapeutic target for metabolic diseases especially NASH.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    6
    Citations
    NaN
    KQI
    []