Critical Measures, Quadratic Differentials, and Weak Limits of Zeros of Stieltjes Polynomials
2011
We investigate the asymptotic zero distribution of Heine-Stieltjes polynomials – polynomial solutions of second order differential equations with complex polynomial coefficients. In the case when all zeros of the leading coefficients are all real, zeros of the Heine-Stieltjes polynomials were interpreted by Stieltjes as discrete distributions minimizing an energy functional. In a general complex situation one deals instead with a critical point of the energy. We introduce the notion of discrete and continuous critical measures (saddle points of the weighted logarithmic energy on the plane), and prove that a weak-* limit of a sequence of discrete critical measures is a continuous critical measure. Thus, the limit zero distributions of the Heine-Stieltjes polynomials are given by continuous critical measures. We give a detailed description of such measures, showing their connections with quadratic differentials. In doing that, we obtain some results on the global structure of rational quadratic differentials on the Riemann sphere that have an independent interest.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
106
References
117
Citations
NaN
KQI