Enhancing the expression of recombinant small laccase in Pichia pastoris by a double promoter system and application in antibiotics degradation.

2021 
Low-expression levels remain a challenge in the quest to use the small laccase (rSLAC) as a viable catalyst. In this study, a recombinant Pichia pastoris strain (rSLAC-GAP-AOX) producing rSLAC under both AOX and GAP promoters (located in two different plasmids) was generated and cultivated in the presence of methanol and mixed feed (methanol:glycerol). Induction with methanol resulted in a maximum laccase activity of 1200 U/L for rSLAC-GAP-AOX which was approximately 2.4-fold higher than rSLAC-AOX and 5.1-fold higher than rSLAC-GAP. The addition of methanol:glycerol in a stoichiometric ratio of 9:1 consistently improved biomass and led to a 1.5-fold increase in rSLAC production as compared to induction with methanol alone. The rSLAC removed 95% of 5 mg/L ciprofloxacin (CIP) and 99% of 100 mg/L tetracycline (TC) in the presence of a mediator. Removal of TC resulted in complete elimination of antibacterial activity while up to 48% reduction in antibacterial activity was observed when CIP was removed. Overall, the present study highlights the effectiveness of a double promoter system in enhancing SLAC production.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    0
    Citations
    NaN
    KQI
    []