Dietary long chain PUFAs differentially affect hippocampal muscarinic 1 and serotonergic 1A receptors in experimental cerebral hypoperfusion

2002 
The chronic dietary intake of essential polyunsaturated fatty acids (PUFAs) can modulate learning and memory by being incorporated into neuronal plasma membranes. Representatives of two PUFA families, the n-3 and n-6 types become integrated into membrane phospholipids, where the actual (n-6)/(n-3) ratio can determine membrane fluidity and thus the function of membrane-bound proteins. In the present experiment we studied hippocampal neurotransmitter receptors after chronic administration of n-3 PUFA enriched diets in a brain hypoperfusion model, which mimics decreased cerebral perfusion as it occurs in ageing and dementia. Male Wistar rats received experimental diets with a decreased (n-6)/(n-3) ratio from weaning on. Chronic experimental cerebral hypoperfusion was imposed by a permanent, bilateral occlusion of the common carotid arteries (2VO) at the age of 4 months. The experiment was terminated when the rats were 7 months old. Three receptor types, the muscarinic 1, serotonergic 1A and the glutaminergic NMDA receptors were labeled in hippocampal slices by autoradiographic methods. Image analysis demonstrated that 2VO increased muscarinic 1 and NMDA receptor density, specifically in the dentate gyrus and the CA3 region, respectively. The increased ratio of n-3 fatty acids in combination with additional dietary supplements enhanced the density of the serotonergic 1A and muscarinic 1 receptors, while n-3 fatty acids alone increased binding only to the muscarinic 1 receptors. Since the examined receptor types reacted differently to the diets, we concluded that besides changes in membrane fluidity, the biochemical regulation of receptor sensitivity might also play a role in increasing hippocampal receptor density.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    56
    Citations
    NaN
    KQI
    []